ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
James W. Baughn, Rudolph Sher
Nuclear Science and Engineering | Volume 58 | Number 1 | September 1975 | Pages 54-63
Technical Paper | doi.org/10.13182/NSE75-A26766
Articles are hosted by Taylor and Francis Online.
Calculations of the Doppler effect on resonance absorption, which assume equivalence, are shown to underestimate the effect in thin lumped absorbers where the mean chord length is of the order of the resonance-neutron mean-free-path. This error results from the deviation of Wigner’s rational approximation, both the original and as modified by Otter, from the exact escape probability in this region. Results for 238U using the computer programs ZUT (with exact escape probabilities) and TRIX (assuming equivalence) are compared. A new temperature-dependent modification to Wigner’s rational approximation is developed and shown to improve agreement between calculations using equivalence and those using exact escape probabilities. Calculations are made for thin 238U metal and oxide slabs in the surface area-to-mass range of 1 to 40 cm2/g and at temperatures up to 2000°C.