ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
T. C. Chawla, G. M. Hauser, M. A. Grolmes, H. K. Fauske
Nuclear Science and Engineering | Volume 58 | Number 1 | September 1975 | Pages 21-32
Technical Paper | doi.org/10.13182/NSE75-A26764
Articles are hosted by Taylor and Francis Online.
A previous single-bubble model describing the coolant motion within an oxide fuel subassembly of a liquid-metal fast breeder reactor due to rapid gas release from multiple pin failure has been extended to include the description of coolant motion following the release of fission gas into the exit coolant plenum. The present model supplements the previous model in that it follows the motion of the lower gas-liquid interface by allowing for the expansion of gas in the exit plenum in the form of a spherical bubble, and by allowing it to detach and form another bubble in its place. The model assumes that the motion of the liquid surrounding the expanding bubble can be described by potential flow theory and that the motion of lower liquid slug in the subassembly can be described by one-dimensional continuity and momentum equations for incompressible flow model. The model also considers the translation of the center of the plenum bubble during its expansion. It is demonstrated that the behavior of the first bubble (i.e., when the difference between bubble pressure and the pressure of the surroundings is large) is analogous to that of the high-pressure bubble formed under large depths of water,and the behavior of those bubbles formed subsequently resembles that of the bubbles due to orifice bubbling above a gas chamber of finite volume. The sample calculations for a Fast Flux Test Facility reactor subassembly indicate that the recovery of coolant flow, even with a nearly simultaneous breach of all 217 pins in the sub-assembly, is very rapid, and the total transient time is not long enough to cause any significant overheating of the coolant and the cladding.