ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
P. C. Hall, R. B. Duffey
Nuclear Science and Engineering | Volume 58 | Number 1 | September 1975 | Pages 1-20
Technical Paper | doi.org/10.13182/NSE75-A26763
Articles are hosted by Taylor and Francis Online.
In postulated loss-of-coolant accidents in water-cooled reactors, it is possible for an increase in Zircaloy clad temperature, coupled with reactor depressurization, to give significant local clad strain, and hence reduced area for coolant flow. This paper establishes a simple method of calculating the effect of consequent impairment of local heat-removal capability. An existing flow model, due to Gambill, has been used to estimate the local reduction in the heat transfer coefficient due to clad ballooning. By formulating an energy balance for the fuel pins, temperature transient curves for the distorted cladding are derived from those for undistorted fuel.To analyze the complicated two-phase phenomena, several simplifying assumptions are contained in the flow model. Results, therefore, are given for a range of flow and blockage assumptions, and are shown to be in reasonable accord with an analysis using large and complex computer codes and with all available experimental data.The model can be applied to all types of water-cooled reactors, including pressure tube reactors, by a suitable evaluation of the resistance to bypass flow.