ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
Ayman I. Hawari, Iyad I. Al-Qasir, Abderrafi M. Ougouag
Nuclear Science and Engineering | Volume 155 | Number 3 | March 2007 | Pages 449-462
Technical Paper | Mathematics and Computation, Supercomputing, Reactor Physics and Nuclear and Biological Applications | doi.org/10.13182/NSE07-A2676
Articles are hosted by Taylor and Francis Online.
In both the prismatic and pebble bed designs of very high temperature reactors, the graphite moderator is expected to reach exposure levels of 1021 to 1022 n/cm2 over the lifetime of the reactor. This exposure results in damage to the graphite structure. Studies of the thermal properties of irradiated graphite show changes in the thermal conductivity and (to a lesser extent) the heat capacity at fluences <1021 n/cm2. In graphite, these properties depend on the behavior of atomic vibrations (phonons) in the solid. Therefore, it can be expected that alterations in the phonon behavior that would produce changes in these properties would have an impact on the thermal neutron scattering behavior of that material. In this work, an atomistic ab initio investigation is performed to explore the potential impact of simple carbon interstitial formations on the inelastic thermal neutron scattering behavior of graphite. Using the VASP/PHONON code system, graphite supercells were modeled with and without either a single carbon interstitial or a di-interstitial (C2) molecule between the graphite planes. This resulted in the production of the phonon frequency spectra for these structures. From the phonon data, the inelastic thermal neutron scattering cross sections were generated, using the NJOY code system, at temperatures of 300 and 1200 K. A comparison of the generated cross sections shows that accounting for the interstitials in the calculations affects the cross sections mainly in the energy range from 0.01 to 0.1 eV.