ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
A look inside NIST’s work to optimize cancer treatment and radiation dosimetry
In an article just published by the Taking Measure blog of the National Institute of Standards and Technology, Stephen Russek—who leads the Imaging Physics Project in the Magnetic Imaging Group at NIST and codirects the MRI Biomarker Measurement Service—describes his team’s work using phantom stand-ins for human tissue.
David P. Weber, Tanju Sofu, Won Sik Yang, Thomas J. Downar, Justin W. Thomas, Zhaopeng Zhong, Jin Young Cho, Kang Seog Kim, Tae Hyun Chun, Han Gyu Joo, Chang Hyo Kim
Nuclear Science and Engineering | Volume 155 | Number 3 | March 2007 | Pages 395-408
Technical Paper | Mathematics and Computation, Supercomputing, Reactor Physics and Nuclear and Biological Applications | doi.org/10.13182/NSE07-A2672
Articles are hosted by Taylor and Francis Online.
The Numerical Nuclear Reactor (NNR) was developed to provide a high-fidelity tool for light water reactor analysis based on first-principles models. High fidelity is accomplished by integrating full physics, highly refined solution modules for the coupled neutronic and thermal-hydraulic phenomena. Each solution module employs methods and models that are formulated faithfully to the first principles governing the physics, real geometry, and constituents. Specifically, the critical analysis elements that are incorporated in the coupled code capability are a direct whole-core neutron transport solution and an ultra-fine-mesh computational fluid dynamics / heat transfer solution, each obtained with explicit (sub-fuel-pin-cell level) heterogeneous representations of the components of the core. The considerable computational resources required for such highly refined modeling are addressed by using massively parallel computers, which together with the coupled codes constitute the NNR. To establish confidence in the NNR methodology, verification and validation of the solution modules have been performed and are continuing for both the neutronic module and the thermal-hydraulic module for single-phase and two-phase boiling conditions under prototypical pressurized water reactor and boiling water reactor conditions. This paper describes the features of the NNR and validation of each module and provides the results of several coupled code calculations.