ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Matthew A. Jessee, David J. Kropaczek
Nuclear Science and Engineering | Volume 155 | Number 3 | March 2007 | Pages 378-385
Technical Paper | Mathematics and Computation, Supercomputing, Reactor Physics and Nuclear and Biological Applications | doi.org/10.13182/NSE07-A2670
Articles are hosted by Taylor and Francis Online.
An optimization method has been developed to determine the optimal fresh fuel rod configurations, fresh streams, and fresh bundle design placements given a known exposed fuel loading pattern and operational strategy for boiling water reactors. The optimization method is based on a first-order approximation of various core parameters, such as hot excess reactivity and critical power ratio, using fuel rod perturbations to the reference fresh bundle designs. A simulated annealing optimization algorithm is shown to produce fresh bundle designs, consisting of rods selected from a user-defined set of rod types that optimize the core design with respect to its design constraints.The method utilizes a linear superposition method based upon sensitivity coefficients to approximate core parameters. A parallel computing system was implemented to decrease wall clock time for the numerous lattice physics and core simulator calculations. A periodic update of the reference bundle design, without the computational burden of updating the sensitivity coefficients, was introduced and is shown to significantly improve the accuracy of the approximation model. Application of the method demonstrates that improved core designs are achieved when a many-fresh bundle design (i.e., stream) solution is considered as part of the design space. Six-stream (and higher) core designs that increase fuel utilization while simultaneously reducing manufacturing costs through reduction of fuel rod types fabricated, previously unattainable with existing methodologies, are now possible.