ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
M. A. Abdou, C. W. Maynard
Nuclear Science and Engineering | Volume 56 | Number 4 | April 1975 | Pages 381-398
Technical Paper | doi.org/10.13182/NSE75-A26684
Articles are hosted by Taylor and Francis Online.
The calculational methods developed for nuclear heating in an earlier paper are applied to fusion-reactor blankets and shields. The study shows that the nuclear heating in fusion-reactor blankets has been previously overestimated and is limited to ≈16 MeV per DT neutron in the absence of beryllium or fissionable materials. Methods are also examined for increasing the energy multiplication in the blanket by maximizing the rates of exothermic reactions. A general study of the sensitivity of the neutron energy deposition to changes in basic nuclear data is carried out: this study shows the following: 1. The (n, charged particles) reactions, in general, contribute ≈30 to 50% to the neutron heating in typical fusion-reactor spectra. The data for these reactions, however, are not well known and in some cases are absent from the literature. 2. Approximating the neutron heating due to the (n, n′, charged particles) reactions by that from the (n, n′) part only, amounts to ignoring 80 to 90% of the heating. 3. For reference fusion-reactor spectra, a change in the average secondary neutron energy, n′ l, of the 7Li(n, n′α)t reaction results in a relative change in the neutron heating in 7Li which is approximately one-third of that in n′, l. 4. The relative change in the neutron heating by elastic scattering due to a change in the angular distribution is larger than the relative change in . Ignoring the anisotropy of scattering can result in severely overestimated kerma factors. 5. The local energy deposition by radioactive decay is on the order of or less than 2% in most materials in typical spectra for controlled thermonuclear reactors.