ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Paul Nelson, Jr.
Nuclear Science and Engineering | Volume 56 | Number 4 | April 1975 | Pages 340-353
Technical Paper | doi.org/10.13182/NSE75-A26681
Articles are hosted by Taylor and Francis Online.
It is argued that variational synthesis with discontinuous trial functions requires variational principles applicable to equations involving operators acting between distinct Hilbert spaces. A description is given of a Roussopoulos-type variational principle generalized to cover this situation. This principle is suggested as the basis for a unified approach to the derivation of variational functionals. In addition to esthetics, this approach has the advantage that the mathematical details increase the understanding of the derived functional, particularly the sense in which a synthesized solution should be regarded as an approximation to the true solution. By way of illustration, the generalized Roussopoulos principle is applied to derive a class of first-order diffusion functionals which admit trial functions containing approximations at an interface. These “asymptotic” interface quantities are independent of the limiting approximations from either side and permit use of different trial spectra at and on either side of an interface. The class of functionals derived contains as special cases both the Lagrange multiplier method of Buslik and two functionals of Lambropoulos and Luco. Some numerical results for a simple two-group model confirm that the “multipliers” can closely approximate the appropriate quantity in the region near an interface.