ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Jeffrey A. Favorite
Nuclear Science and Engineering | Volume 155 | Number 2 | February 2007 | Pages 321-329
Technical Paper | Mathematics and Computation, Supercomputing, Reactor Physics and Nuclear and Biological Applications | doi.org/10.13182/NSE07-A2666
Articles are hosted by Taylor and Francis Online.
Standard variational estimates for perturbations in inhomogeneous transport problems were applied to internal-interface perturbations in coupled neutron-photon problems. Absolute gamma-ray line leakages and ratios of line leakages were the quantities of interest. Gamma-ray spectroscopy using the deterministic multigroup discrete-ordinates code PARTISN was accomplished with a 130-group neutron library and a 120-group photon library with narrow bins centered around gamma lines of interest. Perturbed integrals were evaluated using a volume and a surface formulation, and issues involving negative fluxes (required in the adjoint calculation for line ratios) were addressed. Numerical test problems used a 252Cf source surrounded by a material containing nitrogen and hydrogen; the thickness of this material was perturbed ±86%. The ratios of the 1.8848-, 2.2246-, and 5.2692-MeV thermal neutron capture lines were very well estimated using the variational estimates, even for macroscopic-size perturbations of internal interface locations; the volume-integral formulation for the perturbed integrals was generally more accurate than the surface-integral formulation for estimating ratios. For estimating absolute leakages, the Roussopolos functional in the surface-integral formulation was clearly superior when the gamma-producing shell was thickened, but it produced negative estimates when the shell was thinned.