ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Joh. F. van de Vate, A. Plomp
Nuclear Science and Engineering | Volume 56 | Number 2 | February 1975 | Pages 196-200
Technical Paper | doi.org/10.13182/NSE75-A26658
Articles are hosted by Taylor and Francis Online.
A simple boundary condition has been derived which allows prediction of the stability of an enclosed atmosphere above a heated liquid. The correctness of the condition has been shown by experiments with various vapor-gas systems. Application to nuclear reactor containments under hypothetical accident conditions demonstrates the presence of a stirred atmosphere for sodium-cooled reactors. In case of water-cooled reactors, the containment atmosphere will be stirred when large amounts of fission products are present in the sump water in the concrete cavities located in the lower part of the containment building.