ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Paul B. Bleiweis, William E. Kastenberg, David Okrent
Nuclear Science and Engineering | Volume 56 | Number 2 | February 1975 | Pages 152-170
Technical Paper | doi.org/10.13182/NSE75-A26654
Articles are hosted by Taylor and Francis Online.
Two angular-dependent liquid-metal fast breeder reactor (LMFBR) disassembly models are derived in this paper. These models are based on the physical assumptions of the VENUS (r,z) computer codes (VENUS and VENUS-II). A two-dimensional (r, θ) model is derived to study disassembly in an infinitely long cylinder. The second model is an approximate three-dimensional model which employs the Galerkin method (a subset of the method of weighted residuals) to solve for the three-dimensional motions of materials during disassembly. An iterative technique which is employed to calculate trial and weighting functions for the Galerkin method is proposed and tested. The two angular-dependent disassembly models are used to study four configurations of a reference1000-MW(e) LMFBR. Most of the calculations performed employ the two-dimensional (r, θ) model to estimate the effects of angular dependence on three-dimensional calculations. In addition, a number of three-dimensional calculations are presented both to validate the model and to study the relative effect of angular motion on LMFBR disassemblies. The results indicate that angular motion is second order compared to radial and axial motions for the four configurations studied. These calculations also indicate that the models derived are relatively simple and inexpensive to use and can be employed to study other configurations which may be more dependent cm angular motion during a disassembly accident than the four chosen for this study.