ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
M. Segev
Nuclear Science and Engineering | Volume 56 | Number 1 | January 1975 | Pages 72-82
Technical Paper | doi.org/10.13182/NSE75-A26621
Articles are hosted by Taylor and Francis Online.
Resonance self-shielding occurs as the result of flux depressions at resonance peaks. The group self-shielding factor is defined as the ratio of the effective flux-weighted cross section to the average cross section. Given a constant background cross section, σ, as well as a temperature and an energy group, the shielding factor of an element can be approximated by simple formulas employing two- or three-group effective parameters. These are λ, η, and p—an effective base (potential scattering) cross section, an effective peak cross section, and an effective ratio of the base cross section to the average of the resonance total cross section, respectively. The use of resonance group parameters eliminates the problem of σ- interpolation. Furthermore, through a certain interpretation of these parameters, the σ- ambiguity is also cleared up. The constant background, σ, required to represent the actual interaction of the shielded resonance series with background resonance series, is a linear expression in the number densities and the λ’s of the background elements. The σ- iteration technique, currently in use, is shown to be rather inaccurate.