ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
A look inside NIST’s work to optimize cancer treatment and radiation dosimetry
In an article just published by the Taking Measure blog of the National Institute of Standards and Technology, Stephen Russek—who leads the Imaging Physics Project in the Magnetic Imaging Group at NIST and codirects the MRI Biomarker Measurement Service—describes his team’s work using phantom stand-ins for human tissue.
Naoki Sugimura, Akio Yamamoto, Tadashi Ushio, Masaaki Mori, Masato Tabuchi, Tomohiro Endo
Nuclear Science and Engineering | Volume 155 | Number 2 | February 2007 | Pages 276-289
Technical Paper | Mathematics and Computation, Supercomputing, Reactor Physics and Nuclear and Biological Applications | doi.org/10.13182/NSE155-276
Articles are hosted by Taylor and Francis Online.
A very rigorous and advanced next-generation neutronics design system, AEGIS (Anisotropic, Extended Geometry, Integrated Neutronics Solver), which is based on the deterministic method, is being developed using advanced computer science technology. The method of characteristics, which has the merit of treating heterogeneous geometry explicitly, is utilized in AEGIS as a neutron transport solver. So, the AEGIS code can explicitly model many types of fuel lattices in both commercial light water reactors (LWRs) and advanced reactors such as Generation IV reactors. The AEGIS code can also treat higher-order anisotropic scattering accurately based on spherical harmonics expansion. To compute a large-scale problem, a nonuniform ray-tracing method is implemented in AEGIS. It utilizes the Gauss-Legendre quadrature weight and the macroband method to decide position and width of ray traces to reduce spatial discretization error efficiently. The transport solution of AEGIS has been verified through various benchmark problems. It was found that the AEGIS code can explicitly treat complicated geometry and can efficiently solve a large-scale problem. These results show that flexibility in handling geometry and the very rigorous neutronics calculation models of AEGIS will contribute to predicting neutronics characteristics accurately, not only for commercial LWRs but also for advanced reactors.