ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
O. J. Sheaks, L. Harold Sullivan, Raymond L. Murray
Nuclear Science and Engineering | Volume 51 | Number 3 | July 1973 | Pages 331-335
Technical Note | doi.org/10.13182/NSE73-A26610
Articles are hosted by Taylor and Francis Online.
Operations are performed on the neutron transport equation in general form to obtain an exact multigroup Fick’s Law formalism consistent with the standard multigroup conservation equation. The inherent accuracy of the transport equation is maintained in the derived form of the spatially dependent “diffusion coefficient,” which is shown to be highly dependent on the angular flux spectra. Numerical investigations on fast reactor configurations substantiate the feasibility of incorporating a transport calculated diffusion coefficient in existing diffusion theory codes for reactor design and analysis with dual utility: (a) the errors in diffusion calculations due to incorrect diffusion coefficients can be separated from boundary-condition errors, and (b) the diffusion calculations of certain parametric design studies can be improved to accuracy approaching that of transport theory using spatially averaged diffusion coefficients obtained from a single transport calculation.