ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
David B. Reister
Nuclear Science and Engineering | Volume 51 | Number 3 | July 1973 | Pages 316-323
Technical Paper | doi.org/10.13182/NSE73-A26608
Articles are hosted by Taylor and Francis Online.
A method for determining narrow upper and lower bounds for the fundamental eigenvalue of a nuclear reactor in either multigroup diffusion theory or transport theory has been developed. This method is based on the Barta-Polya theorem. The Barta-Polya theorem has been extended to yield bounds for multigroup diffusion theory eigenvalue problems. The trial function is a linear sum of known modes and unknown amplitude parameters. Determination of the optimum values of the parameters is a max-min problem of the type that occurs in optimum control and economics. To facilitate numerical computation, a coarse mesh is introduced. A computational method has been developed which quickly yields narrow eigenvalue bounds. Classical methods cannot determine optimum bounds since the function which is to be optimized is not differentiable at the max-min point. The bounds are determined using an iterative method. On each iteration the function is linearized about the mesh points, and linear programming is used to find the optimum solution to the approximate problem. Bounds have been found for a two-region, one-group diffusion theory problem and for a one-group transport theory problem. The bounds are superior to previous results and approach the exact solution as the number of terms in the trial function increases.