ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
L. F. Hansen, J. D. Anderson, P. S. Brown, R. J. Howerton, J. L. Kammerdiener, C. M. Logan, E. F. Plechaty, C. Wong
Nuclear Science and Engineering | Volume 51 | Number 3 | July 1973 | Pages 278-295
Technical Paper | doi.org/10.13182/NSE73-A26606
Articles are hosted by Taylor and Francis Online.
The neutron spectra emitted from 0.9, 2.9, and 4.8 mfp of iron for a 14-MeV neutron source have been measured between 14 MeV and 10 keV, using the sphere transmission and time-of-flight techniques. The spectra have also been calculated using the Monte Carlo neutron transport code TART. To reproduce the measurements, a revision of the Lawrence Livermore Laboratory neutron library was carried out. The cross sections were obtained from reported measurements, and a discussion of the revised neutron cross sections is presented. Very good agreement between measurements and calculations was obtained as a function of mean-free-path throughout the entire neutron energy spectrum. Calculations were also carried out with the ENDF/B-III neutron library and compared with the measurements.