ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC’s David Wright visits the Hill and more NRC news
The Nuclear Regulatory Commission is in the spotlight today for three very different reasons. First, NRC Chair David Wright was on the Hill yesterday for his renomination hearing in front of the Senate’s Environment and Public Works Committee. Second, the NRC released its updated milestone schedules according to the Nuclear Energy Innovation and Modernization Act (NEIMA) and the executive orders signed by President Trump last month; and third, as reported by Reuters on Tuesday, 28 former NRC officials have condemned the dismissal of Commissioner Hanson earlier this month.
Mohamed Dahmani, Robert Roy
Nuclear Science and Engineering | Volume 155 | Number 2 | February 2007 | Pages 236-249
Technical Paper | Mathematics and Computation, Supercomputing, Reactor Physics and Nuclear and Biological Applications | doi.org/10.13182/NSE155-236
Articles are hosted by Taylor and Francis Online.
The design of new generations of nuclear reactors will involve fine representations of the theoretical models. Advanced computational methods capable of solving large-scale problems dealing with large and complex systems are required. Therefore, the solution to challenging large-scale neutron transport problems is becoming more and more pressing in nuclear engineering applications. The increase in high-performance computing resources have made possible direct application of transport methods to large-scale computational models. However, many numerical acceleration techniques common to lattice transport codes are not applicable to three-dimensional geometries with heterogeneous material zones, especially for the eigenvalue problems with high-dominance scattering ratio. Consequently, large heterogeneous reactor problems have remained computationally intensive and impractical for routine engineering applications. One of the alternatives is to use high-performance computing methods to solve such problems in reasonable time.In this context, we propose an approach based on high-performance computing techniques to solve large-scale neutron transport problems using a three-dimensional characteristics method. A performance model is then introduced to analyze the three-dimensional characteristics solvers in the context of hybrid shared/distributed memory modern architectures. Several numerical results and discussions are presented including a scalability analysis done to predict the performance on a large number of processors.