ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Ariz. governor vetoes “fast track” bill for nuclear
Gov. Katie Hobbs put the brakes on legislation that would have eliminated some of Arizona’s regulations and oversight of small modular reactors, technology that is largely under consideration by data centers and heavy industrial power users.
R. S. Reynolds
Nuclear Science and Engineering | Volume 51 | Number 2 | June 1973 | Pages 102-112
Technical Paper | doi.org/10.13182/NSE73-A26585
Articles are hosted by Taylor and Francis Online.
Experiments have been performed which give further insight into the so-called “in-and-down” scattering problem. Experimental ceiling attenuation factors have been developed and compared with previously published results of radiation attenuation in basement ceilings.The experiments were performed on a full-scale structure with basement ceiling mass thicknesses of 12 and 0 psf at several solid angle fractions. Additional experiments were performed for several ceiling mass thicknesses at a solid angle fraction near unity. Generally, the experiments showed that previously published ceiling attenuation factors appear inadequate for large solid angle fractions and large overhead mass thicknesses. For small mass thicknesses and solid angle fractions below ≈0.8, the agreement between experiment and previously published results is reasonable. It is clear that ceiling attenuation factors should demonstrate a solid angle fraction dependence as well as a mass thickness dependence. However, these experiments show that there is no reason to believe that in the limit as the solid angle fraction approaches unity, the ceiling attenuation factor should approach old formulations which had no solid angle fraction dependence.It has also been shown in this work that ceiling attenuation factors may be experimentally determined solely from finite field data. There is no need to estimate far-field contributions or skyshine contributions in the determination of ceiling attenuation factors.