ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Ariz. governor vetoes “fast track” bill for nuclear
Gov. Katie Hobbs put the brakes on legislation that would have eliminated some of Arizona’s regulations and oversight of small modular reactors, technology that is largely under consideration by data centers and heavy industrial power users.
Hans K. Fauske
Nuclear Science and Engineering | Volume 51 | Number 2 | June 1973 | Pages 95-101
Technical Paper | doi.org/10.13182/NSE73-A26584
Articles are hosted by Taylor and Francis Online.
A mechanism believed responsible for the explosive vapor growth observed in Armstrong’s experiment with LMFBR materials (liquid sodium injected into molten UO2) is discussed. Basically, liquid sodium globules can be entrained and wet the liquid UO2 surfaces. The lack of nucleation sites in the liquid-liquid-like system results in the overheating of the liquid sodium until homogeneous nucleation occurs. When the superheat limit is reached, vaporization is rapid enough to produce shock waves.The validity of the proposed entrainment-wetting-superheat mechanism to explain the observed UO2-Na explosions has been demonstrated by above surface injection of liquid Freon-11 (normal boiling point 23.8°C) into hot water (70 to 90°C). This liquid-liquid system is believed to simulate Armstrong’s UO2-Na system, since in the latter, the transition from film boiling to nucleate boiling based upon Henry’s film boiling correlation will take place at a temperature well above the melting temperature of UO2.Based upon this mechanism, large-scale coherent UO2-Na vapor explosions would appear impossible in a reactor environment. In a real reactor system, fission gases and fragments, as well as solid materials and gas bubbles entrained in the liquid sodium, would be present and would promote boiling prior to reaching the threshold for homogeneous nucleation in sodium, therefore resulting in mild interactions of the type observed in the TREAT in-pile experiments.