ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Uranium prices reach highest level since February 2024
The end-of-January spot price for uranium was $94.28 per pound, according to uranium fuel provider Cameco. That was the highest spot price posted by the company since the $95.00 per pound it listed at the end of February 2024. Spot prices during 2025 ranged from a low of $64.23 per pound at the end of March to a high of $82.63 per pound at the end of September.
Simone Santandrea
Nuclear Science and Engineering | Volume 155 | Number 2 | February 2007 | Pages 223-235
Technical Paper | Mathematics and Computation, Supercomputing, Reactor Physics and Nuclear and Biological Applications | doi.org/10.13182/NSE155-223
Articles are hosted by Taylor and Francis Online.
This paper presents recent developments of the acceleration techniques for the method of characteristics (MOC) in the code APOLLO-2. The main contribution concerns the introduction of a multidomain DPN technique where all regions belonging to the same macrodomain are coupled by an integral operator that is strictly equivalent to the MOC. Different macrodomains are coupled via currents that are defined with the DPN formalism. This new integral DPN(IDPN) operator is built by using transmission and escape probability factors that respect symmetries/antisymmetries and complementary properties that are enforced to preserve the physics of the problem and to save computational effort. These factors are computed using the numerical tracking of the MOC operator. This paper presents results on realistic assembly calculations that demonstrate the effectiveness of the IDPN operator as a synthetic acceleration tool.