ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Ariz. governor vetoes “fast track” bill for nuclear
Gov. Katie Hobbs put the brakes on legislation that would have eliminated some of Arizona’s regulations and oversight of small modular reactors, technology that is largely under consideration by data centers and heavy industrial power users.
Richard J. Doyas, Sterrett T. Perkins
Nuclear Science and Engineering | Volume 50 | Number 4 | April 1973 | Pages 390-392
Technical Note | doi.org/10.13182/NSE73-A26575
Articles are hosted by Taylor and Francis Online.
The consequences of using three different interpolation methods for tabular neutron and photon energy distribution data are investigated. The three methods are linear interpolation on energy, linear interpolation on energy after the secondary energy ranges are transformed to unit base, and linear interpolation on energy after the initial distributions are converted to cumulative probability distributions by integration over the secondary neutron or photon energy. The latter two methods may subsequently be reconverted to differential probabilities. Linear interpolation on energy without transformation or conversion is shown to be the least desirable for most applications.