ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
M. Segev
Nuclear Science and Engineering | Volume 50 | Number 4 | April 1973 | Pages 354-363
Technical Paper | doi.org/10.13182/NSE73-A26570
Articles are hosted by Taylor and Francis Online.
The neutron energy spectrum of fast reactors in the energy range from several keV to several tens of keV is influenced by a multitude of resonances of the fertile and fissile elements. A single elastic scattering in this range distributes the neutrons across many resonances. Since the resonance parameters are randomly distributed about average values, the collision rate below any energy point is the sum of many, uncorrelated, resonant scattering rates above the point. Hence the collision density, as a function of energy, is a smooth curve dominating over small local fluctuations. It is demonstrated, both analytically for simplified cases and numerically for realistic cases, that the deviations from a smooth curve are negligible.In lethargy units, the smooth collision density is [a (u)/v(u)] exp[-v(u)]. The definitions of the parameters a(u) and v(u) involve only average properties of the resonance population, namely the averages over many resonances of the scattering probabilities si ≡ ∑ (scattering, element)/∑ (total, mixture). The average absorption probability is a(u); ν(u) is given implicitly by the transcendental equation 1 - v = ∑i [〈si〉 /αi] [1-(1-αi )1-v], where αi is the maximum relative energy loss per scattering in the i’th element. An accurate solution of the transcendental equation is found most essential for an accurate prediction of integral reaction rates. For this purpose a series solution for v in terms of 〈si〉 is developed.