ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
DOE extends Centrus’s HALEU production contract by one year
Centrus Energy has announced that it has secured a contract extension from the Department of Energy to continue—for one year—its ongoing high-assay low-enriched uranium (HALEU) production at the American Centrifuge Plant in Piketon, Ohio, at an annual rate of 900 kilograms of HALEU UF6. According to Centrus, the extension is valued at about $110 million through June 30, 2026.
M. Segev
Nuclear Science and Engineering | Volume 50 | Number 4 | April 1973 | Pages 354-363
Technical Paper | doi.org/10.13182/NSE73-A26570
Articles are hosted by Taylor and Francis Online.
The neutron energy spectrum of fast reactors in the energy range from several keV to several tens of keV is influenced by a multitude of resonances of the fertile and fissile elements. A single elastic scattering in this range distributes the neutrons across many resonances. Since the resonance parameters are randomly distributed about average values, the collision rate below any energy point is the sum of many, uncorrelated, resonant scattering rates above the point. Hence the collision density, as a function of energy, is a smooth curve dominating over small local fluctuations. It is demonstrated, both analytically for simplified cases and numerically for realistic cases, that the deviations from a smooth curve are negligible.In lethargy units, the smooth collision density is [a (u)/v(u)] exp[-v(u)]. The definitions of the parameters a(u) and v(u) involve only average properties of the resonance population, namely the averages over many resonances of the scattering probabilities si ≡ ∑ (scattering, element)/∑ (total, mixture). The average absorption probability is a(u); ν(u) is given implicitly by the transcendental equation 1 - v = ∑i [〈si〉 /αi] [1-(1-αi )1-v], where αi is the maximum relative energy loss per scattering in the i’th element. An accurate solution of the transcendental equation is found most essential for an accurate prediction of integral reaction rates. For this purpose a series solution for v in terms of 〈si〉 is developed.