ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Perpetual Atomics, QSA Global produce Am fuel for nuclear space power
U.K.-based Perpetual Atomics and U.S.-based QSA Global claim to have achieved a major step forward in processing americium dioxide to fuel radioisotope power systems used in space missions. Using an industrially scalable process, the companies said they have turned americium into stable, large-scale ceramic pellets that can be directly integrated into sealed sources for radioisotope power systems, including radioisotope heater units (RHUs) and radioisotope thermoelectric generators (RTGs).
J. K. Dickens, G. L. Morgan, F. G. Perey
Nuclear Science and Engineering | Volume 50 | Number 4 | April 1973 | Pages 311-336
Technical Paper | doi.org/10.13182/NSE73-A26567
Articles are hosted by Taylor and Francis Online.
Cross sections for production of gamma rays due to neutron interactions with iron have been measured as a function of both neutron and gamma-ray energy. Two experimental configurations were used to obtain the data: a Nal-spectrometer system using the Oak Ridge Linear Accelerator as the neutron source and a Ge(Li)-spectrometer system using a pulsed Van de Graaff and the D( d, n) reaction as the neutron source. The Nal-spectrometer system, described completely in this report, was used to acquire data for 0.8 ≤ En ≤ 20 MeV and θγ = 125 deg, which were unfolded to obtain d2σ/dωdE values for gamma-ray energies between 0.7 and 10 MeV. The Ge(Li) system was used to obtain high resolution information on the production of discrete-line dσ/dω values for 4.85 ≤ En ≤ 9.0 MeV and θγ = 55, 75, and 90 deg. Our data are compared with previously reported experimental data and with the current ENDF/B evaluation. Although there is generally reasonable (20%) agreement, important differences among these data are discussed.