ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
David Dyrssen
Nuclear Science and Engineering | Volume 16 | Number 4 | August 1963 | Pages 448-455
Technical Paper | doi.org/10.13182/NSE63-A26557
Articles are hosted by Taylor and Francis Online.
This paper is concerned with solvent extraction studies that are used to study complex formation in the aqueous solution as well as in the organic solvent. In this hquid distribution method low metal concentrations can be used and the concentrations can generally be determined radiometrically. With proper choice of conditions, polynuclear reactions (e.g., formation of polynuclear hydroxo complexes) can be avoided, radioelements can be investigated, and the amount of complexing agent bound by the central ion can be neglected. Equilibria that have been investigated include the following types: (1) complexing in the aqueous phase with inorganic (e.g., OH−, Cl−, ) and organic ligands (e.g., CH3COO−, ), where the solvent extraction system is used to measure the concentration of the free metal ion; (2) complexing in both phases with extracting agents (e.g., acetylacetone, oxine); (3) residual coordination in neutral metal chelates or salts (e.g., UO2(NO3)2, UO2(TTA)2, UO2(R2PO4)2); (4) extraction of mixed chelate complexes. Mention is also made of systems that are not categorized by the above types.