ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
ORNL to partner with Type One, UTK on fusion facility
Yesterday, Oak Ridge National Laboratory announced that it is in the process of partnering with Type One Energy and the University of Tennessee–Knoxville. That partnership will have one primary goal: to establish a high-heat flux facility (HHF) at the Tennessee Valley Authority’s Bull Run Energy Complex in Clinton, Tenn.
L. L. Burger
Nuclear Science and Engineering | Volume 16 | Number 4 | August 1963 | Pages 428-439
Technical Paper | doi.org/10.13182/NSE63-A26555
Articles are hosted by Taylor and Francis Online.
The neutral organophosphorus derivatives: phosphines, phosphine oxides, phosphinates, phosphonates, and phosphates are briefly reviewed. All form metal complexes and all except perhaps the first have been studied in some detail in connection with solvent extraction. The physical and chemical properties of these compounds are considered as is the mechanism of extraction for acids and metal salts. Most extractions are straightforward consisting of hydrogen bonding for acids and solvation for neutral salts. The strength of these complexes can often be correlated with infrared or nuclear magnetic resonance (NMR) shifts. Metals display a wide range of extractibility depending on the reagent (solvent and diluent), the aqueous anion, the water activity, and the acidity. Selective extraction is often found for nitrate, per chlorate, perhaloacetate, and some chelating acid salts. Because of the relative simplicity of the solvation complexes and the variability in the solvent strength of the different phosphorus esters, several attempts at thermodynamic studies of the extraction process have been made. Rigorous treatment of most systems will be seen to be difficult and the results have only been moderately satisfactory. Some recent work is discussed. For large scale uranium-plutonium processing, tributyl phosphate is firmly entrenched. Several alternatives have been considered including both alkyl and phenyl phosphonates. For small-scale applications and for analytical separations the more expensive phosphinates and phosphine oxides may be useful.