ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NextGen MURR Working Group established in Missouri
The University of Missouri’s Board of Curators has created the NextGen MURR Working Group to serve as a strategic advisory body for the development of the NextGen MURR (University of Missouri Research Reactor).
T. V. Healy
Nuclear Science and Engineering | Volume 16 | Number 4 | August 1963 | Pages 413-420
Technical Paper | doi.org/10.13182/NSE63-A26553
Articles are hosted by Taylor and Francis Online.
Thenoyl trifluoroacetone (HTTA) has been used by workers in England and the U. S. as the acid in combination with neutral organophosphates (S) to demonstrate a strong (synergistic) enhancement of extraction of metallic species. This enhancement using HTTA is exhibited by many metal species and is much larger (up to 108) than that obtained with the dialkyl phosphoric acids (up to 102). This effect is increased as S is changed from the neutral alkyl phosphates, through phosphonates, to the phosphine oxides. Examples of synergism with HTTA and S are also given where S, the neutral additive, contains no phosphorus and is an amide, alcohol, or ketone. Tracer work has established the composition of over 30 extracting species containing di, tri, and tetravalent metals of the general formula M(TTA)xSy, where x is the valency of M, and y varies between 1 and 3. Confirmation of these formulas has, in a number of instances, been obtained by ultraviolet spectrophotometry on tenth molar solutions and by analysis of anhydrous microcrystalline solids isolated from solution. Stability constants have also been ascertained for many of these synergistic species. Infrared work indicates the likelihood of some of the chelate Ugands becoming monodentate in the synergistic species with direct bonding of S to the metal. If an excess of neutral ester S is added to a synergistic system, antisynergism, that is the reverse of synergism, occurs and decreases of 108 in extraction coefficient can occur. The degree of antisynergism depends on the quantity and nature of S. S could be an alcohol, amide, ketone, ether, ester (including organophosphorus esters) or, in fact, a so called “inert” diluent such as benzene or chloroform. The cause of these very large antisynergistic effects is bound up with the water content of the neutral additive S and of the diluent. There is ultraviolet spectral evidence that the anhydrous species is destroyed with formation of a hydrated TTA species.