ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
T. V. Healy
Nuclear Science and Engineering | Volume 16 | Number 4 | August 1963 | Pages 413-420
Technical Paper | doi.org/10.13182/NSE63-A26553
Articles are hosted by Taylor and Francis Online.
Thenoyl trifluoroacetone (HTTA) has been used by workers in England and the U. S. as the acid in combination with neutral organophosphates (S) to demonstrate a strong (synergistic) enhancement of extraction of metallic species. This enhancement using HTTA is exhibited by many metal species and is much larger (up to 108) than that obtained with the dialkyl phosphoric acids (up to 102). This effect is increased as S is changed from the neutral alkyl phosphates, through phosphonates, to the phosphine oxides. Examples of synergism with HTTA and S are also given where S, the neutral additive, contains no phosphorus and is an amide, alcohol, or ketone. Tracer work has established the composition of over 30 extracting species containing di, tri, and tetravalent metals of the general formula M(TTA)xSy, where x is the valency of M, and y varies between 1 and 3. Confirmation of these formulas has, in a number of instances, been obtained by ultraviolet spectrophotometry on tenth molar solutions and by analysis of anhydrous microcrystalline solids isolated from solution. Stability constants have also been ascertained for many of these synergistic species. Infrared work indicates the likelihood of some of the chelate Ugands becoming monodentate in the synergistic species with direct bonding of S to the metal. If an excess of neutral ester S is added to a synergistic system, antisynergism, that is the reverse of synergism, occurs and decreases of 108 in extraction coefficient can occur. The degree of antisynergism depends on the quantity and nature of S. S could be an alcohol, amide, ketone, ether, ester (including organophosphorus esters) or, in fact, a so called “inert” diluent such as benzene or chloroform. The cause of these very large antisynergistic effects is bound up with the water content of the neutral additive S and of the diluent. There is ultraviolet spectral evidence that the anhydrous species is destroyed with formation of a hydrated TTA species.