ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
D. F. Peppard, G. W. Mason
Nuclear Science and Engineering | Volume 16 | Number 4 | August 1963 | Pages 382-388
Technical Paper | doi.org/10.13182/NSE63-A26549
Articles are hosted by Taylor and Francis Online.
In general, the mono-acidic phosphates and phosphonates are dimeric and the di-acidic phosphates and phosphonic acids are polymeric in the diluents commonly employed in metal extraction studies. Therefore, they may be symbolized, respectively, as (HY)2 and (H2Y)x. The extraction of tracer-level M(III) actinides and lanthanides from a dilute mineral acid by representatives of these two classes of extractants in toluene diluent may be represented, respectively, as: where the subscripts A and O refer to mutually equilibrated aqueous and organic phases. However, in an alcohol diluent the H2Y extractants appear to be monomeric, and they extract M+3 cations with a third-power extractant dependency. In toluene diluent, the HY extractants function as dimers, the extractant dependencies for selected M+2 and M+4 cations being: (2-power); Ca+2, Sr+2, Ba+2 (2.5-power, 3-power); Th+4 (3-power). In certain systems, Th+4 is extracted as a species containing one or two nitrate groups. Structures of the extracted species are postulated.