ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NextGen MURR Working Group established in Missouri
The University of Missouri’s Board of Curators has created the NextGen MURR Working Group to serve as a strategic advisory body for the development of the NextGen MURR (University of Missouri Research Reactor).
James N. Anno
Nuclear Science and Engineering | Volume 16 | Number 4 | August 1963 | Pages 357-362
Technical Paper | doi.org/10.13182/NSE63-A26545
Articles are hosted by Taylor and Francis Online.
Transient-temperature behavior following a step change in internal heat generation has been analyzed to determine the power generation in the Battelle Shielding Facility fission plate. The fission plate is employed for shielding studies as a radiation source with a fission energy distribution. The plate is a 28-in. diam, 0.0199-in. thick uranium disk containing 3741 gm of uranium enriched to 93.14% in the uranium-235 isotope. It is plated with 0.0007 in. of nickel and clad with 0.025 in. of aluminum on each side and is in intimate contact with a 0.25-in. thick aluminum plate on one side. Ceramic spacers provide airgap insulation of the fission-aluminum plate combination from the surrounding media. Resistance thermometers were employed to observe the transient-temperature behavior following a step change in the internal heat generation in the plate for fission heating and for cooling tests. The cooling curve data were strictly exponential and rendered a decay constant of 0.0517 min−1 which was utilized, along with the physical constants of the assembly, to render a solution to the transient-heating equation and an estimated power of 25.0 ± 0.6 watts.