ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Japan gets new U for enrichment as global power and fuel plans grow
President Trump is in Japan today, with a visit with new Prime Minister Sanae Takaichi on the agenda. Takaichi, who took office just last week as Japan’s first female prime minister, has already spoken in favor of nuclear energy and of accelerating the restart of Japan’s long-shuttered power reactors, as Reuters and others have reported. Much of the uranium to power those reactors will be enriched at Japan’s lone enrichment facility—part of Japan Nuclear Fuel Ltd.’s Rokkasho fuel complex—which accepted its first delivery of fresh uranium hexafluoride (UF₆) in 11 years earlier this month.
James N. Anno
Nuclear Science and Engineering | Volume 16 | Number 4 | August 1963 | Pages 357-362
Technical Paper | doi.org/10.13182/NSE63-A26545
Articles are hosted by Taylor and Francis Online.
Transient-temperature behavior following a step change in internal heat generation has been analyzed to determine the power generation in the Battelle Shielding Facility fission plate. The fission plate is employed for shielding studies as a radiation source with a fission energy distribution. The plate is a 28-in. diam, 0.0199-in. thick uranium disk containing 3741 gm of uranium enriched to 93.14% in the uranium-235 isotope. It is plated with 0.0007 in. of nickel and clad with 0.025 in. of aluminum on each side and is in intimate contact with a 0.25-in. thick aluminum plate on one side. Ceramic spacers provide airgap insulation of the fission-aluminum plate combination from the surrounding media. Resistance thermometers were employed to observe the transient-temperature behavior following a step change in the internal heat generation in the plate for fission heating and for cooling tests. The cooling curve data were strictly exponential and rendered a decay constant of 0.0517 min−1 which was utilized, along with the physical constants of the assembly, to render a solution to the transient-heating equation and an estimated power of 25.0 ± 0.6 watts.