ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
James N. Anno
Nuclear Science and Engineering | Volume 16 | Number 4 | August 1963 | Pages 357-362
Technical Paper | doi.org/10.13182/NSE63-A26545
Articles are hosted by Taylor and Francis Online.
Transient-temperature behavior following a step change in internal heat generation has been analyzed to determine the power generation in the Battelle Shielding Facility fission plate. The fission plate is employed for shielding studies as a radiation source with a fission energy distribution. The plate is a 28-in. diam, 0.0199-in. thick uranium disk containing 3741 gm of uranium enriched to 93.14% in the uranium-235 isotope. It is plated with 0.0007 in. of nickel and clad with 0.025 in. of aluminum on each side and is in intimate contact with a 0.25-in. thick aluminum plate on one side. Ceramic spacers provide airgap insulation of the fission-aluminum plate combination from the surrounding media. Resistance thermometers were employed to observe the transient-temperature behavior following a step change in the internal heat generation in the plate for fission heating and for cooling tests. The cooling curve data were strictly exponential and rendered a decay constant of 0.0517 min−1 which was utilized, along with the physical constants of the assembly, to render a solution to the transient-heating equation and an estimated power of 25.0 ± 0.6 watts.