ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Dry Ice Blasting: A Game-Changer for Safe Cleaning and Decontamination in Nuclear Power Plants
The nuclear energy industry is critical not only for meeting the world’s growing demand for electricity but also for advancing global decarbonization goals. As the sector evolves—through life extensions of existing plants, decommissioning, innovations like small modular reactors (SMRs) and microreactors, and new facility construction—the need for safe, efficient, and environmentally responsible maintenance and decommissioning continues to grow. Whether a plant is coming online, operating beyond its original design life, or entering decommissioning, cleanliness and operational integrity remain non-negotiable. That’s where dry ice blasting stands out—a powerful, safe cleaning method ideally suited for the high-stakes demands of nuclear environments.
R. D. Groninger, J. J. Kane
Nuclear Science and Engineering | Volume 16 | Number 2 | June 1963 | Pages 218-226
Technical Paper | doi.org/10.13182/NSE63-A26503
Articles are hosted by Taylor and Francis Online.
Three parallel plate assemblies were tested to investigate the flow induced deflections of the individual plates. Special strain gages imbedded in the edges of the plates were used to measure plate deflections at flow rates up to 190% of the theoretical collapse velocity. The results indicate that the flow induced deflection phenomenon is essentially a magnification of built-in channel spacing perturbations. The deflections assume a sine wave shape along the long axis of the channel, with the greatest deflections occurring at the inlet to the channels. Adjacent plates always move in opposite directions at high flow rates, alternately opening and closing coolant channels. Above the critical velocity, deflections were observed which were sufficient to cause adjacent plates to touch. At about 1.9 times the theoretical collapse velocity, a high frequency flutter of the instrumented plates was observed. Use of an inlet support comb eliminated this flutter.