ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
A new ANSI/ANS standard for liquid metal fire protection published
ANSI/ANS-54.8-2025, Liquid Metal Fire Protection in LMR Plants, received approval from the American National Standards Institute on September 2 and is now available for purchase.
The 2025 edition is a reinvigoration of the withdrawn ANS-54.8-1988 of the same title. The Advanced Reactor Codes and Standards Collaborative (ARCSC) identified the need for a current version of the standard via an industry survey.
Typical liquid metal reactor designs use liquid sodium as the coolant for both the primary and intermediate heat-transport systems. In addition, liquid sodium and NaK (a mixture of sodium and potassium that is liquid at room temperature) are often used in auxiliary heat-removal systems. Since these liquid metals can react readily with oxygen, water, and other compounds, special precautions must be taken in the design, construction, testing, and maintenance of the sodium/NaK systems to ensure that the potential for leakage is very small.
Milton Ash
Nuclear Science and Engineering | Volume 16 | Number 2 | June 1963 | Pages 208-212
Technical Paper | doi.org/10.13182/NSE63-A26501
Articles are hosted by Taylor and Francis Online.
In order to greatly increase the power density of boiling liquid reactors, more turbulent and effusive boiling of the moderator coolant must ensue. However, this would entail handling very large random reactivity excursions with its attendant dangers. Perhaps, this problem could be circumvented by a novel, hyper-speed control comprised of “rod equivalent” systems of very fast response. This would allow the reactor to approach its stability limit more closely and thereby increase the power density. To realize such systems, this effort is directed toward a different conceptualization of the reactor control problem as opposed to the less than adequate small excursion linearized theory extant. The idea involved in “bang-bang” control is that of ever driving the reactor toward its equilibrium state as rapidly as possible from randomly perturbed states in which it finds itself because of the turbulent moderator. The control problem is formulated in a fashion analogous to the brachistochrone class of problems, but with a stochastic feature due to the random reactivity fluctuations. Using the methods of dynamic programming, a functional equation in the minimum time for the reactor to be driven back to equilibrium is obtained. From this is derived an optimal reactor control policy. A controller computer can then be synthesized which instantaneously senses the perturbed state of the reactor. It then computes the optimal reactivity policy and sends actuating signals to the “rod(s)” system. The responding reactor is then found in its new perturbed state, which is again read, etc. This procedure continually drives the reactor toward the equilibrium state in the sense of minimum time defined above.