ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
G. C. Pomraning, M. Clark, Jr.
Nuclear Science and Engineering | Volume 16 | Number 2 | June 1963 | Pages 155-164
Technical Paper | doi.org/10.13182/NSE63-A26495
Articles are hosted by Taylor and Francis Online.
The monoenergetic integro-differential Boltzmann equation with an arbitrary scattering kernel is transformed to a self-adjoint form and the corresponding Lagrangian written. It is shown that this transformation results in a loss of the continuity (neutron conservation) information contained by the Boltzmann equation. This information is recovered by writing the directional flux as the sum of an even and odd function (in angle) and considering a self-adjoint Lagrangian for only one portion (even or odd) of the directional flux. This procedure is shown to be equivalent to separating the nonself-adjointness from the Boltzmann operator. Further, it is shown that this self-adjoint principle is an extremum principle if the mean number of secondaries per collision is less than one. This self-adjoint formalism is applied to the angular expansion of the directional flux which results in an improved diffusion theory. Numerical results for the linear extrapolation distance and diffusion coefficient are compared with the classical (P − 1) diffusion theory.