ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
G. C. Pomraning, M. Clark, Jr.
Nuclear Science and Engineering | Volume 16 | Number 2 | June 1963 | Pages 147-154
Technical Paper | doi.org/10.13182/NSE63-A26494
Articles are hosted by Taylor and Francis Online.
The variational method as applied to the monoenergetic integro-differential Boltzmann equation is investigated. It is shown that rendering the Lagrangian stationary with respect to small changes in the directional flux and adjoint directional flux is equivalent to solving the Boltzmann and adjoint Boltzmann equations. Topics discussed include the use of variational weight functions, the inclusion of boundary terms in the functional, the interpretation of a variational optimum for a nonself-adjoint operator, and the second variation. It is shown that, for the general trial function ensemble and within a special restricted trial function ensemble, the variational method is a saddle point principle. The formalism developed is applied to the angular expansion in polynomials of the directional flux.