ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
M. M. R. Williams
Nuclear Science and Engineering | Volume 155 | Number 1 | January 2007 | Pages 109-118
Technical Note | doi.org/10.13182/NSE05-73TN
Articles are hosted by Taylor and Francis Online.
The polynomial chaos functions of Wiener are used to solve a stochastic differential equation. It is shown that a variety of polynomials are available according to the probability distribution of the underlying random element. Using the Legendre chaos polynomials, we have solved the problem of radiation transmission through a slab of random material properties in the P1 approximation. For a special case, it is possible to obtain an exact solution to this problem, and hence the rate of convergence of the chaos expansion can be examined. Results are shown in tabular form and graphically, which compare the stochastic average with the deterministic average and significant differences are found. In addition we calculate the variance in the flux and current across the slab, thereby giving a measure of the uncertainty associated with the average. The method of polynomial chaos offers an alternative procedure to the normally used closure, or special statistics, methods for the study of spatial randomness and has the potential to deal with very complex systems, although the full computational implications have yet to be determined. In the Appendix, we show how the Boltzmann equation, with spatially random cross sections, can be reduced to a coupled set of deterministic equations.