ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
K. Macku, F. Jatuff, M. Murphy, M. Plaschy, P. Grimm, O. P. Joneja, R. Chawla
Nuclear Science and Engineering | Volume 155 | Number 1 | January 2007 | Pages 96-101
Technical Paper | doi.org/10.13182/NSE07-A2647
Articles are hosted by Taylor and Francis Online.
In the context of the LWR-PROTEUS program, radial and azimuthal 235U fission (F5) and 238U capture (C8) rate distributions have been calculated for zero-burnup pins of a Westinghouse SVEA-96 Optima2 boiling water reactor fuel assembly using the stochastic MCNP4C and the deterministic CASMO-4 codes. The within-pin F5 distributions predicted by the two codes are in very good agreement; the C8 distributions are more pronounced, and there are significant discrepancies between the codes, both azimuthally and radially. The calculations have been compared with experimental results obtained from activation foil measurements in two pins of the assembly irradiated in the center of the PROTEUS test zone. The measurements confirm that the two codes can accurately predict the radial and azimuthal F5 distributions but that MCNP4C within-pin C8 distributions are much more accurate than those of CASMO-4.