ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Chris Wagner: The role of Eden Radioisotopes in the future of nuclear medicine
Chris Wagner has more than 40 years of experience in nuclear medicine, beginning as a clinical practitioner before moving into leadership roles at companies like Mallinckrodt (now Curium) and Nordion. His knowledge of both the clinical and the manufacturing sides of nuclear medicine laid the groundwork for helping to found Eden Radioisotopes, a start-up venture that intends to make diagnostic and therapeutic raw material medical isotopes like molybdenum-99 and lutetium-177.
L. Leibowitz, J. G. Schnizlein, L. W. Mishler
Nuclear Science and Engineering | Volume 15 | Number 4 | April 1963 | Pages 404-410
Technical Paper | doi.org/10.13182/NSE63-A26457
Articles are hosted by Taylor and Francis Online.
It has been found that the addition of several percent of any of a score of halogenated hydrocarbons to air in which uranium or zirconium foil is burning will markedly lower both the burning propagation velocity and the maximum burning temperature. For example, the addition of 2% CH3C1 will lower the burning propagation velocity of 0.013 × 0.3 cm uranium foil from 0.52 to 0.41 cm/sec; the maximum burning temperature is lowered from 1375 to 1225°C. The use of 2% CH3CHF2 prevented burning from progressing along the entire length of this foil. For combustion of 0.002 × 0.3 cm zirconium foil, CF2BrCF2Br, CF3Cl, and CF3Br were found to be effective inhibiting agents. Because of the flammability of CH3CHF2, measurements were made of the effect of several halogenated agents on the flammability limits of that compound. It was found for example, that a 1:1 mixture of CH3CHF2 and CF3Cl was nonflammable and effectively inhibited burning propagation of the uranium foil used in this study. Measurements with the uranium foil showed chlorine and bromine containing compounds to lower significantly the metal ignition temperature. That the halogenated agents may have opposite effects on ignition and steady combustion is a reflection of the difference in the controlling factors in the two cases.