ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
L. Leibowitz, J. G. Schnizlein, L. W. Mishler
Nuclear Science and Engineering | Volume 15 | Number 4 | April 1963 | Pages 404-410
Technical Paper | doi.org/10.13182/NSE63-A26457
Articles are hosted by Taylor and Francis Online.
It has been found that the addition of several percent of any of a score of halogenated hydrocarbons to air in which uranium or zirconium foil is burning will markedly lower both the burning propagation velocity and the maximum burning temperature. For example, the addition of 2% CH3C1 will lower the burning propagation velocity of 0.013 × 0.3 cm uranium foil from 0.52 to 0.41 cm/sec; the maximum burning temperature is lowered from 1375 to 1225°C. The use of 2% CH3CHF2 prevented burning from progressing along the entire length of this foil. For combustion of 0.002 × 0.3 cm zirconium foil, CF2BrCF2Br, CF3Cl, and CF3Br were found to be effective inhibiting agents. Because of the flammability of CH3CHF2, measurements were made of the effect of several halogenated agents on the flammability limits of that compound. It was found for example, that a 1:1 mixture of CH3CHF2 and CF3Cl was nonflammable and effectively inhibited burning propagation of the uranium foil used in this study. Measurements with the uranium foil showed chlorine and bromine containing compounds to lower significantly the metal ignition temperature. That the halogenated agents may have opposite effects on ignition and steady combustion is a reflection of the difference in the controlling factors in the two cases.