ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
Ury Passy, Naftali H. Steiger
Nuclear Science and Engineering | Volume 15 | Number 4 | April 1963 | Pages 366-374
Technical Paper | doi.org/10.13182/NSE63-A26452
Articles are hosted by Taylor and Francis Online.
Most of the energy generated during the fission process is released as kinetic energy of the fission products. This energy moves the fission products a distance of a few microns in solid materials. When the fissionable material is prepared as a powder of particles with diameters smaller than the range of the fission products in the material used, it is expected that the fission products will leave the particles of the fissionable material. To avoid the penetration of the fission product into an adjacent particle of fissionable matter, the latter may be diluted with a liquid or solid diluent. The use of solid diluents having strong adsorption properties is believed to improve the separation between fission products and fuel when sedimentation in water is chosen as the separation method. In a series of experiments, mixtures of U3O8 with infusorial earth and silica gel as diluents having strong adsorbing properties were irradiated. About 95% of the fission products were found in the diluent. Most of the activity of the U3O8 was due to Np. The readsorption of fission products to U3O8 was smaller than in previous experiments in which no adsorbent was mixed with the fissionable material. Surface activation of the U3O8 was found after irradiation. About half of the fission products taken up by the diluent were found to be adsorbed at its surface. Mean fission-product ranges in U3O8 were estimated on an experimental and theoretical basis and agreement between theory and experiment is found to be good for most of the fission products.