ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
3D-printed tool at SRS makes quicker work of tank waste sampling
A 3D-printed tool has been developed at the Department of Energy’s Savannah River Site in South Carolina that can eliminate months from the job of radioactive tank waste sampling.
G. C. Hanna
Nuclear Science and Engineering | Volume 15 | Number 3 | March 1963 | Pages 325-337
Technical Paper | doi.org/10.13182/NSE63-A26444
Articles are hosted by Taylor and Francis Online.
Skyrme has given a theoretical treatment of the perturbation of the neutron flux in a diffusing medium by an absorbing foil. His theory is re-examined, with particular reference to the modification proposed by Ritchie and Eldridge, and the “edge correction” is evaluated. The accuracy of this modified Skyrme theory is tested by comparison with Dalton and Osborn’s computer calculations for monokinetic neutrons; the agreement is generally better than 1%. This theory is then extended to a Maxwellian neutron spectrum, for which computer calculations are not available, with the result
A is the activity per unit mass of a foil of thickness τ (in units of the absorption mean free path), Ao that of a zero thickness foil, , where t and R are the thickness and radius of the foil. The bars denote averages over the Maxwellian spectrum. The flux-depression parameter g is of the order of R/λtr, but its exact value depends on the velocity dependence of the transport mean free path, and on the thermalization properties of the medium. This formula is used to obtain, from the available measurements of the dependence of A on foil thickness, “experimental” values of g. For both graphite and hydrogenous media they are smaller than expected.