ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
G. Kessler
Nuclear Science and Engineering | Volume 155 | Number 1 | January 2007 | Pages 53-73
Technical Paper | doi.org/10.13182/NSE07-A2644
Articles are hosted by Taylor and Francis Online.
This paper analyzes whether reactor plutonium after denaturing by increasing its isotopic content of 238Pu to 6 to 8% can be regarded as proliferation resistant. In this case the utilization of such denatured reactor plutonium would become unsuitable for a nuclear explosive device (NED) because the high-explosive lenses surrounding the plutonium would melt or their elevated temperature would lead to self-ignition. Eight different plutonium isotopic mixtures with increasing 238Pu content are analyzed, and their critical masses if surrounded by a 5-cm-thick reflector of natural uranium are determined. This allows calculation of the alpha-particle heat power generated in the plutonium sphere by 238Pu and other plutonium isotopes. Then, three levels of technology with regard to the size of such hypothetical NEDs (HNEDs) and the technological level of high explosives are defined. On the basis of material data available in the open scientific literature, the radial temperature profiles in such HNEDs of an assumed configuration are calculated, and it is found that for low-technology HNEDs the limiting temperatures are exceeded for a 238Pu content of 1.6%. For high-technology HNEDs these limiting temperatures are exceeded for a 238Pu content above ~6% or somewhat more. Such denatured plutonium can be considered as proliferation resistant, similarly as uranium with <20% 235U or <12% 233U.