ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
Louis M. Shotkin, Frederick H. Abernathy
Nuclear Science and Engineering | Volume 15 | Number 2 | February 1963 | Pages 197-212
Technical Paper | doi.org/10.13182/NSE63-A26419
Articles are hosted by Taylor and Francis Online.
The stability of the thermal flux in a reflected slab reactor due to xenon and temperature reactivity feedback is investigated using perturbation theory. A reactor with spatially constant fuel, equilibrium flux, and materials in the core is examined under various reactivity feedback situations. Stability criteria are given along with associated oscillation periods for the condition of neutrally stable equilibrium, i.e., continuous oscillation of the perturbed flux. The conditions for interaction of the xenon and temperature reactivity feedback are shown for both long and short temperature delays; the effect of delayed neutrons being considered when appropriate. A cosine fuel distribution is found to be necessary to give spatially constant equilibrium flux and this cosine fuel model is shown to predict slightly more stable conditions than the flat fuel model. Coupling of the first two (even or odd) excited modes is shown to occur (for a constant power density model) in large, high flux reactors, leading to more unstable conditions than with no coupling.