ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
Louis M. Shotkin, Frederick H. Abernathy
Nuclear Science and Engineering | Volume 15 | Number 2 | February 1963 | Pages 197-212
Technical Paper | doi.org/10.13182/NSE63-A26419
Articles are hosted by Taylor and Francis Online.
The stability of the thermal flux in a reflected slab reactor due to xenon and temperature reactivity feedback is investigated using perturbation theory. A reactor with spatially constant fuel, equilibrium flux, and materials in the core is examined under various reactivity feedback situations. Stability criteria are given along with associated oscillation periods for the condition of neutrally stable equilibrium, i.e., continuous oscillation of the perturbed flux. The conditions for interaction of the xenon and temperature reactivity feedback are shown for both long and short temperature delays; the effect of delayed neutrons being considered when appropriate. A cosine fuel distribution is found to be necessary to give spatially constant equilibrium flux and this cosine fuel model is shown to predict slightly more stable conditions than the flat fuel model. Coupling of the first two (even or odd) excited modes is shown to occur (for a constant power density model) in large, high flux reactors, leading to more unstable conditions than with no coupling.