ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Sara A. Pozzi, Imre Pázsit
Nuclear Science and Engineering | Volume 154 | Number 3 | November 2006 | Pages 367-373
Technical Paper | doi.org/10.13182/NSE06-A2639
Articles are hosted by Taylor and Francis Online.
In a recent paper, a simple analytical model to describe the statistics of the number of scattering collisions undergone by fast neutrons as they slow down until they are absorbed was presented. In that study, it was assumed that the moderator was infinite and homogeneous and accounted for scattering and absorption by a single nuclear species. In the present paper, that methodology is extended to the more realistic case of neutron slowing down in a homogeneous mixture. The formulas are derived and evaluated numerically, and the results are found to be in very good agreement with corresponding Monte Carlo simulations. The average value of the number of collisions that a neutron undergoes before being captured is computed. The results for a capture-gated detector composed of hydrogen, carbon, and boron are discussed.