ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Chris Wagner: The role of Eden Radioisotopes in the future of nuclear medicine
Chris Wagner has more than 40 years of experience in nuclear medicine, beginning as a clinical practitioner before moving into leadership roles at companies like Mallinckrodt (now Curium) and Nordion. His knowledge of both the clinical and the manufacturing sides of nuclear medicine laid the groundwork for helping to found Eden Radioisotopes, a start-up venture that intends to make diagnostic and therapeutic raw material medical isotopes like molybdenum-99 and lutetium-177.
Yousef M. Farawila, Douglas W. Pruitt
Nuclear Science and Engineering | Volume 154 | Number 3 | November 2006 | Pages 302-315
Technical Paper | doi.org/10.13182/NSE06-A2635
Articles are hosted by Taylor and Francis Online.
A study of the nonlinear behavior of growing density-wave oscillations is presented in the framework of a reduced-order model. Nonlinear effects are included in both the hydraulic and neutron kinetics equations, where both were found to contribute to the observed limit cycles. In this paper, Part I, the basic concepts were developed and applied to the global oscillation mode, where only the fundamental neutron flux mode excitation is considered. Approximate analytical solutions for the limit cycle amplitude and the time evolution of the transient were derived. In Part II, the model order is increased to allow the representation of the azimuthal neutron flux harmonic and the simulation of growing regional mode oscillations. Analysis demonstrates that the regional mode, unlike the global mode, may not always reach a stable limit cycle, and if it does, the regional limit cycle amplitudes are large compared with the global mode. An extended reduced-order model has been developed for use as an accurate quantitative tool for simulating actual reactor situations, whereas the current paradigm restricts the applicability of reduced-order models to gaining qualitative insights.