ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
Roberto Orsi
Nuclear Science and Engineering | Volume 154 | Number 2 | October 2006 | Pages 247-259
Computer Code Abstract | doi.org/10.13182/NSE06-A2631
Articles are hosted by Taylor and Francis Online.
The finite difference approach poses a major problem of keeping the exact values of material zone areas and volumes in any geometric simulation for transport calculations. When this requirement is not thoroughly fulfilled, updating density values may be necessary to conserve material zone masses. A method is described that conserves the mass of geometrically complex material zones simulated on both Cartesian and cylindrical mesh grids and its implementation in BOT3P5.0, which is the latest version of the BOT3P code package, publicly and freely available from the Organization for Economic Cooperation and Development/Nuclear Energy Agency Data Bank. BOT3P5.0 lets users optionally require as refined a computation as desired of the possible area and volume error of material zones due to the stair-cased geometry representation and automatically corrects material densities to globally conserve masses. BOT3P5.0 optionally stores on binary outputs the detailed material zone distribution map inside each cell of the mesh grid according to a submesh grid refinement defined in input by the user and the area and volume fraction distribution of the different material zones contained in meshes at zone interfaces. That also allows a local (per-cell) density correction as an alternative to the approach of a uniform density correction on the whole zone domain and makes it possible to perform material zone homogenization locally and transport analyses more accurately.