ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
A look inside NIST’s work to optimize cancer treatment and radiation dosimetry
In an article just published by the Taking Measure blog of the National Institute of Standards and Technology, Stephen Russek—who leads the Imaging Physics Project in the Magnetic Imaging Group at NIST and codirects the MRI Biomarker Measurement Service—describes his team’s work using phantom stand-ins for human tissue.
Aldo Dall'Osso
Nuclear Science and Engineering | Volume 154 | Number 2 | October 2006 | Pages 241-246
Technical Paper | doi.org/10.13182/NSE06-A2630
Articles are hosted by Taylor and Francis Online.
The accuracy of a neutronics model depends not only on the validity of the equations that are solved but also on the quality of the cross-section model. This last is currently constituted by a set of correlations, the parameterized tables, relating the data of the neutronics problem to the local conditions. The more the correlations represent the local conditions, the more the results will be accurate. For a simulation model, this means that the results will be closer to the measurements. The goal of the data identification method presented is to solve a constrained inverse problem and to obtain the parameters of some further correlations that will enhance the accuracy of the results. The constraint imposed minimizes the error committed in solving the diffusion equation, using as reference the results of a more accurate computer code or the measurements performed for in-core flux maps. Some purely numerical examples and an application in conjunction with in-core measurements illustrate the method.