ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Jinsuo Zhang, Ning Li, Yitung Chen
Nuclear Science and Engineering | Volume 154 | Number 2 | October 2006 | Pages 223-232
Technical Paper | doi.org/10.13182/NSE06-A2628
Articles are hosted by Taylor and Francis Online.
The key aspects of oxygen control technique used for steel corrosion mitigation in lead-alloy systems include the thermodynamic stability of protective oxides, oxygen concentration range, measurement and control methods, and oxide layer structures and transport properties. Practical conditions for oxygen control and the proper oxygen concentration ranges for typical nonisothermal liquid lead and lead-bismuth eutectic (LBE) systems are presented based on the available thermodynamic and solubility data. Theoretical expressions for the widely used oxygen sensor signals are obtained. The sensors are calibrated by comparing the experimental results from a nonisothermal LBE loop and the theoretical calculations. Analyses show that the fully turbulent flow leads to a nearly uniform oxygen concentration over the entire loop, and there is no significant delay of sensor response to a change of the operating condition. Under conditions of actively controlled oxygen in lead and LBE, the possible behaviors for oxidation, corrosion, and corrosion product precipitation are analyzed, providing the means to optimize corrosion control through oxide protection.