ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
Per Seltborg, Jan Wallenius
Nuclear Science and Engineering | Volume 154 | Number 2 | October 2006 | Pages 202-214
Technical Paper | doi.org/10.13182/NSE06-A2626
Articles are hosted by Taylor and Francis Online.
The distribution of actinides in the core of an accelerator-driven system loaded with plutonium, americium, and curium has been studied in order to optimize the proton source efficiency *. The optimization of * was performed by keeping some important characteristics of the system, e.g., the radial power profile and the reactivity of the core, constant. One of the basic assumptions of the study, that the magnitude of * is sensitive primarily to the composition of actinides in the inner part of the core, whereas only marginally to that in the outer part, has been confirmed. It has been shown that the odd-N nuclides (those nuclides with an even number of neutrons) in general and 241Am and 244Cm in particular have favorable properties with respect to improving * if they are placed in the innermost part of the core. The underlying reason for this phenomenon is that the energy spectrum of the source neutrons in the inner part of the core is harder than that of the average fission neutrons. Moreover, it has been shown that loading the inner part of the core with only curium increases * by ~7%. Plutonium, on the other hand, in particular high-quality plutonium consisting mainly of 239Pu and 241Pu, was found to be a comparatively source inefficient element and is preferably located in the outer part of the core. The differences in * are due to combined effects from relative changes in the average fission and capture cross sections and in the average fission neutron yield.