ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Per Seltborg, Jan Wallenius
Nuclear Science and Engineering | Volume 154 | Number 2 | October 2006 | Pages 202-214
Technical Paper | doi.org/10.13182/NSE06-A2626
Articles are hosted by Taylor and Francis Online.
The distribution of actinides in the core of an accelerator-driven system loaded with plutonium, americium, and curium has been studied in order to optimize the proton source efficiency *. The optimization of * was performed by keeping some important characteristics of the system, e.g., the radial power profile and the reactivity of the core, constant. One of the basic assumptions of the study, that the magnitude of * is sensitive primarily to the composition of actinides in the inner part of the core, whereas only marginally to that in the outer part, has been confirmed. It has been shown that the odd-N nuclides (those nuclides with an even number of neutrons) in general and 241Am and 244Cm in particular have favorable properties with respect to improving * if they are placed in the innermost part of the core. The underlying reason for this phenomenon is that the energy spectrum of the source neutrons in the inner part of the core is harder than that of the average fission neutrons. Moreover, it has been shown that loading the inner part of the core with only curium increases * by ~7%. Plutonium, on the other hand, in particular high-quality plutonium consisting mainly of 239Pu and 241Pu, was found to be a comparatively source inefficient element and is preferably located in the outer part of the core. The differences in * are due to combined effects from relative changes in the average fission and capture cross sections and in the average fission neutron yield.