ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Chris Wagner: The role of Eden Radioisotopes in the future of nuclear medicine
Chris Wagner has more than 40 years of experience in nuclear medicine, beginning as a clinical practitioner before moving into leadership roles at companies like Mallinckrodt (now Curium) and Nordion. His knowledge of both the clinical and the manufacturing sides of nuclear medicine laid the groundwork for helping to found Eden Radioisotopes, a start-up venture that intends to make diagnostic and therapeutic raw material medical isotopes like molybdenum-99 and lutetium-177.
Zhaopeng Zhong, Thomas J. Downar, Yunlin Xu, Mark L. Williams, Mark D. DeHart
Nuclear Science and Engineering | Volume 154 | Number 2 | October 2006 | Pages 190-201
Technical Paper | doi.org/10.13182/NSE06-3
Articles are hosted by Taylor and Francis Online.
A method is presented to obtain a continuous-energy representation of the neutron spectrum using two-dimensional discrete ordinates calculations with a combination of multigroup (MG) and pointwise (PW) nuclear data. This provides the capability of determining the fine-structure energy distribution of the angular flux and flux moments within the resonance range as well as the smoother spectrum in the high- and thermal-energy ranges. The continuous-energy flux spectra can be utilized as problem-dependent weighting functions within the whole two-dimensional domain to process self-shielded MG cross sections for reactor physics and/or criticality safety analysis so that the two-dimensional heterogeneous effect in the resonance calculation can be fully considered. This calculational method has been implemented in a new PW transport code called GEMINEWTRN that may be executed as a module in the SCALE computer code system. Example applications using ENDF/B cross-section data are presented to study the two-dimensional heterogeneous effect in the resonance calculations.