ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Japan gets new U for enrichment as global power and fuel plans grow
President Trump is in Japan today, with a visit with new Prime Minister Sanae Takaichi on the agenda. Takaichi, who took office just last week as Japan’s first female prime minister, has already spoken in favor of nuclear energy and of accelerating the restart of Japan’s long-shuttered power reactors, as Reuters and others have reported. Much of the uranium to power those reactors will be enriched at Japan’s lone enrichment facility—part of Japan Nuclear Fuel Ltd.’s Rokkasho fuel complex—which accepted its first delivery of fresh uranium hexafluoride (UF₆) in 11 years earlier this month.
Alfred L. Mowery, Jr., Raymond L. Murray
Nuclear Science and Engineering | Volume 14 | Number 4 | December 1962 | Pages 401-413
Technical Paper | doi.org/10.13182/NSE62-A26249
Articles are hosted by Taylor and Francis Online.
This paper is devoted to the exposition and illustration of a technique the authors have designated as the generalized variational method (GVM). The analysis is based on the variational approach and is an outgrowth of investigations in the hyper circle method. In essence, the GVM consists of considering the trial functions that appear symmetrically (quadratically) in a positive-semidefinite variational principle as independent functions. A proposition was proved to demonstrate generally that the approximate eigenvalue obtained from the GVM is at least as accurate as the geometric average of the associated approximate eigenvalues. Also, a conjecture was proposed that the accuracy of the generalized variational eigenvalue is comparable to that of a variational result employing a trial function incorporating the dimensionality of both associated trial functions. The application of the GVM to the perturbation-variational method yielded results that firmly establish the method. The generalized method completes the perturbation-variational method by providing the formerly missing even-order approximate results. For illustration, the GVM was employed to solve a bare reactor with a grey control sheet. Using Ray-leigh-Ritz optimized cosine series and optimized pyramid functions as associated solutions, the generalized variational eigenvalue accuracy indicated the effective combination of the dimensionalities of the associated trial functions.