ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
A new ANSI/ANS standard for liquid metal fire protection published
ANSI/ANS-54.8-2025, Liquid Metal Fire Protection in LMR Plants, received approval from the American National Standards Institute on September 2 and is now available for purchase.
The 2025 edition is a reinvigoration of the withdrawn ANS-54.8-1988 of the same title. The Advanced Reactor Codes and Standards Collaborative (ARCSC) identified the need for a current version of the standard via an industry survey.
Typical liquid metal reactor designs use liquid sodium as the coolant for both the primary and intermediate heat-transport systems. In addition, liquid sodium and NaK (a mixture of sodium and potassium that is liquid at room temperature) are often used in auxiliary heat-removal systems. Since these liquid metals can react readily with oxygen, water, and other compounds, special precautions must be taken in the design, construction, testing, and maintenance of the sodium/NaK systems to ensure that the potential for leakage is very small.
Amir N. Nahavandi
Nuclear Science and Engineering | Volume 14 | Number 3 | November 1962 | Pages 272-286
doi.org/10.13182/NSE62-A26217
Articles are hosted by Taylor and Francis Online.
A digital computer analysis of the loss-of-coolant accident in the primary system of a multicircuit core nuclear power plant in the event of a complete severance of a pressure or jumper tube is presented. The time-dependent mass, momentum, and energy balance differential equations are expressed in finite difference form and solved numerically on an IBM-7090 digital computer together with the equations of state, system boundary conditions, and constraints. The system mass flow rate, pressure, and enthalpy distribution are calculated together with the other important system properties as functions of time during the transient operation following the break. The application of the analysis to the Carolinas-Virginia Tube Reactor indicates that the loss-of-coolant accident could lead to flow starvation in the reactor core and steam formation in the primary pump with subsequent core damage if no corrective action were taken. The flow starvation and steam formation problems are solved by the operation of a high pressure, high capacity emergency injection pump with fast starting characteristics.