ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Marvin Tetenbaum, Larry Mishler, Glenn Schnizlein
Nuclear Science and Engineering | Volume 14 | Number 3 | November 1962 | Pages 230-238
doi.org/10.13182/NSE62-A26211
Articles are hosted by Taylor and Francis Online.
Because ignition temperature is not an intrinsic property of a substance, the investigation reported in this paper was undertaken to measure the ignition behavior of uranium powder under well-defined boundary conditions such that quantitative predictions are possible. The ignition behavior of uranium powder has been found to be dependent on specific area of powder fraction, rate of heating, and geometry of sample. For a given mesh size powder and heating rate, constant limiting ignition temperature values are obtained practically independent of container size, when the powder bed exceeds a critical height. Critical height values are found to increase with particle size of powder; for a given particle size powder, critical height values decrease with heating rate. On the basis of the Frank-Kamenetskii theory of thermal explosions, when used in a restricted manner, limiting ignition temperature values for uranium powder can be estimated using critical height values as the significant geometrical dimension of the container. These calculated ignition temperatures are in reasonable agreement with those obtained with our experimental apparatus. The ignition behavior of uranium powder can be adequately described by converting isothermal expressions to a rising temperature basis according to the treatment of Murray, Buddery, and Taylor.