ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
A new ANSI/ANS standard for liquid metal fire protection published
ANSI/ANS-54.8-2025, Liquid Metal Fire Protection in LMR Plants, received approval from the American National Standards Institute on September 2 and is now available for purchase.
The 2025 edition is a reinvigoration of the withdrawn ANS-54.8-1988 of the same title. The Advanced Reactor Codes and Standards Collaborative (ARCSC) identified the need for a current version of the standard via an industry survey.
Typical liquid metal reactor designs use liquid sodium as the coolant for both the primary and intermediate heat-transport systems. In addition, liquid sodium and NaK (a mixture of sodium and potassium that is liquid at room temperature) are often used in auxiliary heat-removal systems. Since these liquid metals can react readily with oxygen, water, and other compounds, special precautions must be taken in the design, construction, testing, and maintenance of the sodium/NaK systems to ensure that the potential for leakage is very small.
Marvin Tetenbaum, Larry Mishler, Glenn Schnizlein
Nuclear Science and Engineering | Volume 14 | Number 3 | November 1962 | Pages 230-238
doi.org/10.13182/NSE62-A26211
Articles are hosted by Taylor and Francis Online.
Because ignition temperature is not an intrinsic property of a substance, the investigation reported in this paper was undertaken to measure the ignition behavior of uranium powder under well-defined boundary conditions such that quantitative predictions are possible. The ignition behavior of uranium powder has been found to be dependent on specific area of powder fraction, rate of heating, and geometry of sample. For a given mesh size powder and heating rate, constant limiting ignition temperature values are obtained practically independent of container size, when the powder bed exceeds a critical height. Critical height values are found to increase with particle size of powder; for a given particle size powder, critical height values decrease with heating rate. On the basis of the Frank-Kamenetskii theory of thermal explosions, when used in a restricted manner, limiting ignition temperature values for uranium powder can be estimated using critical height values as the significant geometrical dimension of the container. These calculated ignition temperatures are in reasonable agreement with those obtained with our experimental apparatus. The ignition behavior of uranium powder can be adequately described by converting isothermal expressions to a rising temperature basis according to the treatment of Murray, Buddery, and Taylor.