ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
J. G. MORGAN, M. F. OSBORNE, O. SISMAN
Nuclear Science and Engineering | Volume 14 | Number 1 | September 1962 | Pages 83-100
Technical Paper | doi.org/10.13182/NSE62-A26201
Articles are hosted by Taylor and Francis Online.
Post-irradiation examinations have been completed on all but the very long burnup samples for the EGCR fuel evaluation studies. The results have confirmed the reliability of this fuel element design at least up to the burnup thus far attained (2400 Mw-day/metric ton UO2). Fission gas release was not excessive except for the very high temperature irradiations. Although the pellets did sometimes show considerable cracking, pieces did not fall into the central cavity, and the hollow cylinder pellet design was shown to be stable. In the 1600°F prototype experiments, ridges were formed in the clad at pellet interfaces and evidence of sigma phase formation and some void formation was found in the metallographic examination of the ridges. The UO2 was found to contain many fine cracks which caused the pellets to break up on handling, but very little fuel shifting occurred before the cans were cut open.