ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
J. G. MORGAN, M. F. OSBORNE, O. SISMAN
Nuclear Science and Engineering | Volume 14 | Number 1 | September 1962 | Pages 83-100
Technical Paper | doi.org/10.13182/NSE62-A26201
Articles are hosted by Taylor and Francis Online.
Post-irradiation examinations have been completed on all but the very long burnup samples for the EGCR fuel evaluation studies. The results have confirmed the reliability of this fuel element design at least up to the burnup thus far attained (2400 Mw-day/metric ton UO2). Fission gas release was not excessive except for the very high temperature irradiations. Although the pellets did sometimes show considerable cracking, pieces did not fall into the central cavity, and the hollow cylinder pellet design was shown to be stable. In the 1600°F prototype experiments, ridges were formed in the clad at pellet interfaces and evidence of sigma phase formation and some void formation was found in the metallographic examination of the ridges. The UO2 was found to contain many fine cracks which caused the pellets to break up on handling, but very little fuel shifting occurred before the cans were cut open.